Prospects for Medical Advances Affecting the Elderly

Dana P. Goldman
Acknowledgements

RAND
Michael Hurd
Geoffrey Joyce
Emmett Keeler
Darius Lakdawalla

Stanford
Jay Bhattacharya
Alan Garber

Harvard
David Cutler

Constantijn Panis
Baoping Shang
Paul Shekelle

Funding was provided by NIA through the RAND Roybal Center for Health Policy Simulation and the RAND Aging Center. Original model developed with funding by CMS.
Health Care Spending is Rising as a Share of Economic Output

Health care spending as a percentage of GDP

On Average, Spending Is Worth It

Infant mortality

Cardiovascular disease

Note: Infants are under 1 year; Cardiovascular disease includes diseases of the heart and cerebrovascular diseases.

But Will Emerging Technologies Be Worth the Cost?

The Left Ventricular Assist Device

Source: Rose et al, New Engl. J. of Med., 345(20);2001, Figure 1.
Research Objectives

- Identify the key biomedical innovations and health trends likely to affect the elderly over the next 30 years
- Model the effects on:
 - Spending
 - Disease
 - Functional status
Convened Panels of Experts from Around the Country

- Identified key breakthroughs in 3 clinical areas:
 - Cardiovascular disease
 - Neurological disorders
 - Cancer / biology of aging*

- Fourth panel of geriatricians and social scientists

*Combined since cancer is now closely linked with the aging process at the cellular level.
Example: Intraventricular Defibrillators

| Target: | 50% of patients with heart failure
| | 50% of patients post AMI
| | 20% of patients with cardiomyopathy
| Likelihood: | 30% in 10 yrs
| | 30-40% in 20 yrs
| Impact: | Life expectancy of people with heart failure increases 6-10 months
| | No impact on hospitalizations
| Cost: | $35,000 - $40,000 per case

~3.5 million in 2004
Our Model Tracks **Individuals** Over Time

100,000 Medicare beneficiaries (age 65+) in 2005

- **Survivors**
- **Deceased**

New 65 year-olds in 2006

- Health & functional status, 2006
 - **Survivors**
 - **Deceased**

New 65 year-olds in 2007

- Health & functional status 2007
 - **Survivors**
 - **Deceased**

2005 costs

2006 costs

2007 costs

Etc.
Example 1: Compound to Extend Lifespan

- Overwhelming biomedical evidence that reducing caloric intake of animals by 30% increases life expectancy by 25%
 - Chemical compounds can mimic this behavior in rodents

- Such a pill could emerge for humans
 - Taken by everyone at a cost similar to nutritional supplements ($1/day)
 - Hazard of death decreases by 63% (equivalent to extending life by 15 years)
Aged Population Would Grow by 13 Million by 2030

Total Number of Elderly (65+)

Year

Population (millions)
"Status Quo"

"Compound"

Population (millions)
84
71
Much More Heart Disease

![Graph showing the increase in the percentage of people with heart disease from 2000 to 2030. The graph compares the Status Quo and a Compound condition. The percentage for the Status Quo starts at around 40% in 2000 and increases to 44% in 2030. For the Compound condition, the percentage starts at around 52% in 2000 and increases to 55% in 2030.](image-url)
Health Care Spending Would Be 70% Higher in 2030

Elderly Health Care Spending

- **Status Quo**
- **Compound**

Billions of 1998 dollars

Year

934

621
Society Faces Substantial Technological Risk In Elderly Medical Spending

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase in medical spending* (%)</th>
<th>Cost per additional life-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-aging compound (healthy)</td>
<td>13.8</td>
<td>8,790</td>
</tr>
<tr>
<td>Anti-aging compound (unhealthy)</td>
<td>70.4</td>
<td>29,785</td>
</tr>
</tbody>
</table>

*Increase in 2030 health care spending relative to status quo without the technology.

Source: Goldman et al, *Health Affairs*, forthcoming
Example 2: Intraventricular Cardioverter Defibrillators

- Currently used to treat patients with life-threatening arrhythmias
 - Shocks heart to restore natural rhythm
 - 26,000 procedures in 1988
 - $35,000 per procedure

- Scenario would expand their use
 - Implant in 50% of patients with heart failure or myocardial infarction
 - Reduces risk of death by 10%

- Panel told us 35% chance of such an expansion
Will Reach 350,000 Procedures Annually by 2030
Will Add About $20 -$25 Billion Annually to Health Spending in Steady-State
Little Change in Functional Status for the Elderly Population

Elderly With Any Functional Impairment

Prevalance (%)

Year

ICD
Status Quo
Society Faces Substantial Technological Risk In Elderly Medical Spending

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase in medical spending* (%)</th>
<th>Cost per additional life-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-aging compound (healthy)</td>
<td>13.8</td>
<td>8,790</td>
</tr>
<tr>
<td>Anti-aging compound (unhealthy)</td>
<td>70.4</td>
<td>29,785</td>
</tr>
<tr>
<td>Implantable cardio-defibrillators</td>
<td>3.7</td>
<td>103,095</td>
</tr>
</tbody>
</table>

*Increase in 2030 health care spending relative to status quo without the technology.

Source: Goldman et al, *Health Affairs*, forthcoming
Society Faces Substantial Technological Risk In Elderly Medical Spending

<table>
<thead>
<tr>
<th>Technology</th>
<th>Increase in medical spending* (%)</th>
<th>Cost per additional life-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-aging compound (healthy)</td>
<td>13.8</td>
<td>8,790</td>
</tr>
<tr>
<td>Cancer vaccines</td>
<td>0.4</td>
<td>18,236</td>
</tr>
<tr>
<td>Treatment of acute stroke</td>
<td>0.4</td>
<td>21,905</td>
</tr>
<tr>
<td>Anti-aging compound (unhealthy)</td>
<td>70.4</td>
<td>29,785</td>
</tr>
<tr>
<td>Telomerase inhibitors (cancer)</td>
<td>0.5</td>
<td>61,884</td>
</tr>
<tr>
<td>Implantable cardio-defibrillators</td>
<td>3.7</td>
<td>103,095</td>
</tr>
<tr>
<td>Antiangiogenesis (cancer)</td>
<td>8.0</td>
<td>498,809</td>
</tr>
<tr>
<td>Left ventricular assist devices</td>
<td>2.3</td>
<td>511,962</td>
</tr>
<tr>
<td>Pacemaker for atrial fibrillation</td>
<td>2.3</td>
<td>1,403,740</td>
</tr>
</tbody>
</table>

*Increase in 2030 health care spending relative to status quo without the technology.

Source: Goldman et al, *Health Affairs*, forthcoming
Key Findings

• Substantial technological risk in Medicare
 – Not just demographic risk caused by the aging of baby boomers

• Living longer is valuable, but not because it saves money
 – Curing any one disease will not fix the problem
 – Obesity may be an important exception

• Challenge is to figure out how we get treatment to the patients who most need it