Overview

The journey to a post-COVID era is a difficult one. Although two promising vaccines are currently authorized for emergency use, with others on the way, and more than 4.2 million people have received the first of two required doses as of January 3, 2021, the United States fell short of its goal to inoculate 20 million front-line workers and seniors in December 2020. Adding to the vaccine administration challenge, three mutations of COVID-19, named B.1.1.7 (the European variant), B.1.351 (the South African variant) and P.1. (the Brazilian variant), have been identified among positive cases in at least 40 states in the U.S. According to the CDC there is no evidence to-date to suggest that these variants cause more severe illness or a higher risk of death than COVID-19.

As the world remains uncertain about how the coronavirus pandemic will evolve or come to an end, states and local entities have been working tirelessly to mitigate the spread of the virus, inoculate as many Americans as quickly and safely as possible, and contend with new virus mutations. On February 4, 2021, the Alliance for Health Policy hosted a briefing that explored state efforts to contend with the virus. Expert panelists shared their views about the challenges and opportunities states face in safe and timely vaccine deployment and supply management, plans states are executing to ensure equitable vaccine distribution, plans states are executing to ensure equitable vaccine distribution along the way, and understand the difference between COVID-19 and its variants.

Key Lessons

- Federal officials set a goal to have 20 million people receive their first shot by the end of 2020. Since the week of December 14, 2020, to the time of this publication, the nation’s public health and health care system safely and appropriately administered 33,878,254 vaccinations, including 6,436,931 2nd doses. It was thought that in order to reach “herd immunity”, 60% of the U.S. population must be vaccinated; that is approximately 198 million Americans. However, the proliferation of new, more contagious virus strains requires a higher proportion of the population to get vaccinated making herd immunity a moving target.

- The United States’ campaign to vaccinate against COVID-19 is far behind schedule and multiple factors are contributing to this timeline. State health officials, health systems, and front-line staff are faced with a steep learning curve for responding to a public health emergency of this size. There is a need for an established cadence, consistency, and predictability of vaccine supplies. As administration sites adapt to scheduling around expiry windows and delicate storage requirements of vaccines, there is risk of wastage, reporting lag times, and under-reporting doses administered.

- State allocation strategy is dependent on supply. Without clear figures of vaccine availability, states cannot effectively plan distribution and administration of available vaccine doses.

- States are facing a steep learning curve in data collection and reporting. States are relying not only on existing systems, but are navigating new systems, system enhancements, and adapting to new processes for reporting. In addition, providers with limited broadband access may be unable to enter
data in a timely fashion, or experience volume overload. As well, a number of states may face legal hurdles. For example, some state laws may limit the ability to collect or report on racial and ethnic demographic data, which may be a barrier to completeness of data and sharing a full understanding of equity dynamics. There is a lot to work through in the weeks and months ahead.

Information Systems and Data Flow for COVID-19 Vaccine Distribution and Administration

Data Infrastructure
- Data infrastructure is essential to operationalizing vaccine distribution and administration
- States have existing systems (e.g., immunization information systems) but are also navigating new systems and processes
- Timely, accurate, and complete data are critical
- Operational, technical, and legal challenges exist

As of February 2, 2021, there were 242 COVID-19 vaccines either approved or in development from manufacturers. Top candidates from Moderna and Pfizer/BioNTech were approved for emergency use authorization demonstrating 94% and 95% efficacy, respectively. Other leading candidates have either been approved abroad in the UK or are in phase-three clinical trials. With the first two vaccine candidates available in the United States demonstrating such high efficacy rates, other vaccines may seem less appealing to the general population. However, efficacy isn’t the only measure that should be considered when focusing on these vaccines. The Moderna and Pfizer/BioNTech vaccine efficacy
rates that built on existing mRNA research stunned the science community. They far surpassed the annual flu vaccine’s efficacy rate, which is 65-70% from year to year, a vaccine that we trust and receive annually. Outside of efficacy, we should consider the ability for the vaccines to prevent respiratory arrest and mitigate hospitalizations.

<table>
<thead>
<tr>
<th>COVID-19 VACCINE TRACKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACCINE TRACKER</td>
</tr>
<tr>
<td>RAPIDLY EVOLVING, CHECK BACK OFTEN.</td>
</tr>
<tr>
<td>LAST UPDATED: FEBRUARY 2, 2021 8:25 PM PST</td>
</tr>
<tr>
<td>242 vaccines are in development.</td>
</tr>
<tr>
<td>55 are now in clinical testing.</td>
</tr>
<tr>
<td>10 are in use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vaccine Sponsor</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderna</td>
<td>mRNA</td>
<td>Canada, Israel, Switzerland, and the E.U., U.S., and U.K.</td>
</tr>
<tr>
<td>Pfizer/BioNTech</td>
<td>mRNA</td>
<td>European Commission and in Argentina, Mexico, Saud Arabia, Canada, Bahrain, and the U.S. and U.K.</td>
</tr>
<tr>
<td>AstraZeneca/University of Oxford</td>
<td>Non-Replating Viral Vector</td>
<td>Argentina, Brazil, Dominican Republic, El Salvador, India, Mexico, Morocco, Pakistan, and the U.K.</td>
</tr>
<tr>
<td>Gamaleya Research Institute (Russia)</td>
<td>Non-Replating Viral Vector</td>
<td>Algeria, Argentina, Bolivia, Hungary, Palestine, Paraguay, Serbia, Turkmenistan, UAE, and Venezuela, and "registered" in Belarus and Russia</td>
</tr>
<tr>
<td>CanSino Biologics</td>
<td>Non-Replating Viral Vector</td>
<td>"The military" by China’s Central Military Commission</td>
</tr>
<tr>
<td>Research Institute for Biological Safety Problems, Republic of Kazakhstan</td>
<td>Inactivated Virus</td>
<td>"Temporary registration" in Kazakhstan</td>
</tr>
<tr>
<td>Wuhan Institute of Biological Products/BioPharm</td>
<td>Inactivated Virus</td>
<td>For "emergency use" in China and the UAE</td>
</tr>
<tr>
<td>Sinovac</td>
<td>Inactivated Virus</td>
<td>For "emergency use" in Brazil, China, and Indonesia</td>
</tr>
<tr>
<td>Beijing Institute of Biological Products/Sinopharm</td>
<td>Inactivated Virus</td>
<td>For "emergency use" in Bahrain, China, Pakistan, and the UAE</td>
</tr>
<tr>
<td>Bharat Biodesi/Indian Council of Medical Research</td>
<td>Inactivated Virus</td>
<td>For "emergency use" in India</td>
</tr>
</tbody>
</table>

Questions & Answers

What should we know about the COVID-19 variants?

"The rise of variants from Brazil, the UK, and South Africa are posing new threats to global health as the current vaccines roll-out. What we know from the CDC is that these new strains are more transmissible than [other] COVID-19 [strains]. Antibodies from approved vaccines may recognize the mutations, but more studies need to be done to be conclusive. Mitigation strategies like masks, social distancing, etc. are more critical than ever to stop the spread and the rise of new mutations." – Esther Krofah, MPP, Executive Director, FasterCures, a Center of the Milken Institute

What are the key elements of a successful vaccine rollout? What infrastructure(s) must states have in place to support successful distribution and administration?

"Procedures for determining allocation to critical populations, distribution and administration, data infrastructure for managing, tracking, and reporting, and communication and engagement, with equity as a cross-cutting and underlying focus." – Kate Johnson, MPH, Program Director, Health, National Governors Association
What do states need and what can states do moving forward?

"Continuous assessment and adjustment to improve efficiencies, ongoing management of supply and demand tensions including transparency and communications, bring to scale the campaign by expanding and sustaining infrastructure capacity and capabilities, address vaccine hesitancy and build trust in the system and confidence in the vaccine, maintain a flexible posture for variant strains." – James S. Blumenstock, MA, Senior Vice President, Pandemic Response and Recovery, Association of State and Territorial Health Officials

"Better and faster genomic sequencing and ongoing surveillance, rapid deployment of vaccines to most at-risk groups, quickly followed by other priority groups, and diligent and consistent mitigation efforts, continued vaccine discovery and rapid production." – Esther Krofah, MPP, Executive Director, FasterCures, a Center of the Milken Institute

Experts

Jim Blumenstock*
Senior Vice President, Pandemic Response and Recovery, Association of State and Territorial Health Officials
jblumenstock@astho.org

Christopher Bouquet
Bouquet Law Office, Attorney
cbouquet@bouquetlawoffice.com

Rena Conti
Boston University Institute for Health System Innovation and Policy, Associate Research Director of Biopharma and Public Policy
rconti@bu.edu

Kenzie A. Cameron
Northwestern Feinberg School of Medicine, Research Professor
k-cameron@northwestern.edu

Lisa A. Cooper
John Hopkins School of Medicine & Bloomberg School of Public Health, Bloomberg Distinguished Professor
health.equity@jhmi.edu

Erin Fox
University of Utah Health Drug Information and Support Services, Senior Pharmacy Director
erin.fox@hsc.utah.edu

Kate Johnson*
Program Director, National Governors Association
kjohnson@nga.org

Esther Krofah*
FasterCures, Executive Director
ekrofah@milkeninstitute.org

Nicolette Louissaint
Healthcare Ready, Executive Director
nlouissaint@healthcareready.org

Mark McClellan
Duke-Margolis Center for Health Policy, Senior Fellow and Director
Contact: Suky Warner, suky.warner@duke.edu

Richard Moscicki
Pharmaceutical Research and Manufacturers of America, Executive VP of Science and Regulatory Affairs
rmoscicki@phrma.org

Jewel Mullen
The University of Texas at Austin, Dell Medical School, Associate Dean for Health Equity
jewel.mullen@austin.utexas.edu

Anne Pritchett
Pharmaceutical Research and Manufacturers of America, Senior VP of Policy and Research
apritchett@phrma.org

L.J. Tan
Immunization Action Coalition, Chief Strategy Officer
lj.tan@immunize.org

Hemi Tewarson
Duke-Margolis Center for Health Policy, Visiting Senior Policy Fellow
hemi.tewarson@duke.edu

*Served as panelist for February 4, 2021 event

"Why Our Vaccine Deployment is Shy of Target: State Responses to Vaccine Supply."
Resources

This event was hosted by the Alliance for Health Policy on February 4, 2021. The Alliance gratefully acknowledges the support of Arnold Ventures for this event. For additional resources, please visit allh.us/4hmu.