

Improving the Diagnostic Odyssey for Rare Disease Patients

July 29, 2021

Join us online!

@AllHealthPolicy

Alliance for Health Policy

@AllianceforHealthPolicy

#AllHealthLive

Participating in the Webinar

Learn More

Additional resources available online »

- Full speaker bios
- Resources list
- Expert list
- Presentation slides
- Recording

www.allhealthpolicy.org

Panelists

Matthew Might, Ph.D. Professor, Department of Medicine Director Hugh Kahl Precision Medicine Institute

Stephen Kingsmore, M.D., DSc

President & CEO Rady Children's Institute of Genomic Medicine

Linda Goler Blount, MPH President & CEO Black Women's Health Imperative

Nelly Ganesan, MPH

Principal Avalere

@ng_healthpolicy

Moderator

Sarah Dash, MPH President & CEO Alliance for Health Policy

Matthew Might, Ph.D.

Professor, Department of Medicine Director Hugh Kahl Precision Medicine Institute

Stephen Kingsmore, M.D., DSc

President & CEO Rady Children's Institute of Genomic Medicine

We now know 6,000 genetic diseases

- Genetic diseases for which molecular basis is known: 6,138
- Increase in known genetic diseases: ~1 per day
- MANY causes of common childhood disorders:
 - Seizures: 1,283 genetic diseases
 - Intellectual disability: 1,681 genetic diseases
 - Recurrent infection: 699 genetic diseases
 - Congenital heart disease: 1,889 genetic diseases
 - Metabolic abnormalities: 3,402 diseases

Rady

hildren's Institute

https://www.omim.org/statistics/entry, accessed June 2021. Modified from Hudson K. et al. *Nat Biotechnol.* 2006;24(9):1083-1090.

There is an ongoing technology revolution

Rady Childrens Institute Genomic Medicine

- Genome sequencing now possible for ~\$700
- Automated, diagnostic whole genome sequencing now possible in 13.5 hours

Genome Sequencing Saves Lives

1. Kingsmore SF, et al. Am J Hum Genet. 2019;105:719-733.

2. Dimmock DP. et al. Am J Hum Genet. 2020:107:942-952.

3. Cakici JA, et al. Am J Hum Genet. 2020;107:953-962.

The Evidence Is Overwhelming

Ref.	Date	Study Type	Seq Type	Neonatal & Pediatric Intensive Care Unit Enrollment Criteria	Size	Dx Rate	Change in Management	Change in Outcome	TAT (d)
1	2012	Cases	urWGS	NICU infants with suspected genetic disease	4	75%	n.d.	n.d.	2
2,3	2015	Cohort	rWGS	<4 months of age; Suspected actionable genetic disease	35	57%	31%	29%	23
4	2017	Cohort	rWES	<100 days of life; Suspected genetic disease	63	51%	37%	19%	13
5	2018	RCT	rWGS	<4 months of age; Suspected genetic disease	32	41%	31%	n.d.	13
6	2018	Cohort	rWGS	infants; Suspected genetic disease	42	43%	31%	26%	23
7	2018	Cohort	rWES	Acutely ill children with suspected genetic diseases	40	53%	30%	8%	16
8	2018	Cohort	rWGS	Children; PICU and Cardiovascular ICU	24	42%	13%	n.d.	9
9	2019	Cohort	rWGS	4 months-18 years; PICU; Suspected genetic diseases	38	48%	39%	8%	14
10	2019	Cohort	rWGS	Suspected genetic disease	195	21%	13%	n.d.	21
11	2019	Cases	urWGS	Infants; Suspected genetic disease	7	43%	43%	n.d.	0.8
13	2020	Cohort	rWES	<4 mo of age; ICU; hypotonia, seizures, metabolic, multiple congenital anomalies	50	54%	48%	n.d.	5
14	2020	Cohort	rWES	NICU & PICU; complex	130	48%	23%	n.d.	3.8
15	2020	Cohort	rWES	Critical illness; medical genetics selected	46	43%	52%	n.d.	9
16	2020	Cohort	rWES	PICU; < 6 years; new metabolic/neurologic disease	10	50%	30%	n.d.	9.8
17	2020	Cohort	rWES	ICU	368	27%	n.d.	n.d.	n.d.
18	2020	Cohort	rWES	>1 year; ICU and inpatient	102	31%	27%	n.d.	11
19	2020	Cohort	rWES	Various	41	32%	n.d.	n.d.	7
20	2020	Implement	rWES	<18 yr; NICU and PICU	108	51%	44%	n.d.	3
12, 21	2019	RCT	rWGS		94	19%	24%	10%	11
			rWES	Infants; disease of unknown etiology; within 96 hours of admission	95	20%	20%	18%	11
			urWGS		24	46%	63%	25%	4.6
22	2021	Cohort	rWGS,panel	Infants; disease of unknown etiology	113	33%	26%	n.d.	n.d.
23	2021	Implement	rWGS	Medicaid infants; unknown etiology; within 1 week of admission	178	43%	31%	n.d.	3
Weighted Average					1839	36%	29%	25%	

Implement, Implementation science study

References at the end of this presentation.

RCT, randomized, controlled trial. rWES, rapid whole exome sequencing.

Speaker's own illustration.

- 1. https://www.radygenomics.org/our-work/project-baby-bear/, accessed March 2021.
- 2. http://community.mha.org/browse/announcements?AnnouncementKey=ef2cf136-3f73-4c99-afa8-dc908a7661cd, accessed March 2021.
- 3. https://www.nicklauschildrens.org/medical-services/personalized-medicine-initiative-(pmi)/genomic-medicine, accessed March 2021.

California Medicaid Example

Dimmock D, et al. *Am J Hum Genet.* May 29:S0002-9297(21)00192-0. https://www.radygenomics.org/our-work/project-baby-bear/, accessed March 2021. CHOC, Children's Hospital of Orange County; UC, University of California; ZIP, zone improvement plan.

Results: Genome Sequencing Decreases Medicaid Cost of Care

Speaker's own illustration.

- 1. https://www.radygenomics.org/our-work/project-baby-bear/, accessed March 2021. Final report.
- 2. Dimmock D, et al. Am J Hum Genet. In Press. .

Linda Goler Blount

President & CEO Black Women's Health Imperative

Nelly Ganesan, MPH

Principal Avalere

The Diagnostic Journey for Rare Disease Patients: Scaling Sustainable Solutions

Key Steps in the Ideal Patient Journey

Ideal rare disease patient diagnosis begins with genotypical/phenotypical symptom identification facilitated through robust technology platforms which lead to a rapid and appropriate diagnosis.

Copyright ©2020. Avalere Health LLC. All Rights Reserved.

Challenges and Barriers to Scale and Spread

Copyright ©2020. Avalere Health LLC. All Rights Reserved.

Copyright ©2020. Avalere Health LLC. All Rights Reserved.

Learn More

Additional resources available online »

- Full speaker bios
- Resources list
- Expert list
- Presentation slides
- Recording

www.allhealthpolicy.org

Alliance for Health Policy Handbook

An introduction to the health policy and health care ecosystem A straightforward, unbiased guide to the basics of health policy

available now! allh.us/Handbook

We value your input!

Please fill out the evaluation survey you will receive immediately after this presentation, or via email this afternoon!

www.allhealthpolicy.org

Thank you for attending.